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Abstract —A theoreticalprocedurewellsuitedfor generating design data is presented and discussed for c = 12, the dielectric constant of typicaf

on dielectric grating antennas for the millimeter-wave region is presented. millimeter-wave materials, snch as silicon and GaAs.

The procedure utilizes the effective dielectric constant (EDC) method to

determine the phase constant of the leaky modes supported by the antenna I. INTRODUCTION

structure of finite Iateraf width. The radiation or leakage constant of these

modes is obtained from the relatively simple boundary vahre problem of

dielectric grating antennas of infinite width. For single-beam radiation, the

practicably interesting case, the phase and leakage constants completely

determine the field distribution in tbe antenna aperture, from which the

directivity gain and radiation pattern are then calculated. The dependence

of the antenna characteristics on the dimensions of ‘the radiating structure
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n ECENT ADVANCES in the fabrication of rnillime-
~ter-wave systems using integrated-circuit technology
have stimulated considerable interest in the development of
new antenna configurations compatible with this technol-
ogy [1]–[8]. If the antenna can be integrated with other
components, the cost, size, and weight of the system can be
greatly reduced. A dielectric waveguide with a periodic
surface corrugation has been shown to hold substantial
promise as a leaky-wave antenna for millimeter-wave ap-
plications [2]–[8]. Such an antenna structure may be con-
veniently fabricated on a uniform dielectric waveguide to
form a completely integrated millimeter-wave system. In
addition, these dielectric leaky-wave antennas offer the
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advantage of electronic beam steering [2]–[3]. A consider-
able effort has been directed in recent years at better
understanding this particular class of antennas and explor-
ing its applications in millimeter-wave systems.

In this paper, we present a relatively simple design
procedure for periodically corrugated image waveguides
acting as a leaky-wave antenna. We recognize that this
class of structures has been extensively analyzed for in-
tegrated optics applications as beam-to-surface-wave cou-
plers, distributed feedback reflectors, and filters [9]. In fact,
leaky-wave antennas and optical periodic couplers are based
on the same physical principle, and a great deal of infor-
mation on the basic wave characteristics of the optical
devices can simply be carried over for the understanding of
the millimeter-wave antennas. However, because of the
substantial difference in the permittivity of the materials
commonly used in the two frequency ranges and because of
the different environments in which millimeter-wave anten-
nas and optical periodic couplers are operated, these de-
vices differ in many respects. The main purpose of this
paper is to apply the results known for the optical counter-
part [ 10]–[ 14] to the design of the millimeter-wave anten-
nas, while appropriately taking into account the differences
between the two frequency ranges.

Radiation from dielectric grating antennas is effected by
the periodic perturbation of the waves guided by the
uniform part of the waveguide structure, to be referred to
as the unperturbed structure. This radiation occurs only in
certain preferred directions, primarily determined by the
phase constant of the unperturbed structure and the period
of the perturbation. As a consequence of the associated
radiation loss, the wave guided by the unperturbed struc-
ture must decay exponentially, as it propagates along the
antenna. Therefore, the wave will exist with appreciable
magnitude only over a finite length of the antenna, and a
beam will be radiated with a beamwidth proportional to
the decay constant of the guided wave. Conversely, the
decay constant can be taken as a measure of the rate of
energy leakage from the unperturbed structure and is often
referred to as the leakage constant. Since the phase and
decay constants determine the field distribution over the
antenna aperture, they are the most important characteris-
tics to be determined in the design of leaky-wave antennas.

Calculation of the exact radiation patterns of leaky-wave
antennas of finite aperture is a difficult theoretical prob-
lem. The discontinuities at the entrance and exit ends, as
well as the field extending beyond the side walls, will cause
pattern distortions and increased sidelobe levels. On the
other hand, under somewhat idealized conditions, pattern
calculation becomes straightforward and the basic wave
phenomena associated with this class of antennas can be
considered well understood.

Consistent with the viewpoint and philosophy stated
above, we analyze these antennas by a simple procedure
that consists of three steps: the first is the use of the
effective dielectric constant (EDC) method to determine
the phase constant of the unperturbed uniform image
waveguide for a preliminary design of the antenna config-
uration; the second is to determine the decay or leakage

constant by the methods previously employed for optical
periodic couplers; and finally, in the third step, the radia-
tion patterns are determined from the field distribution in
the antenna aperture [15]. We review first, in Section II, the
theoretical background that includes various topics rele-
vant to the overall goal of this work. In particular, the
procedures for determining the propagation and radiation
constants of periodic antennas will be discussed in some
detail.

As stated earlier, a main thrust in ongoing millimeter-
wave R&D is the full development of integrated-circuit
technology. In order to facilitate integration of millimeter-
wave antennas with other active and passive components,
it is expected that these antennas will be fabricated from
silicon or GaAs; these materials have a relative] y high
dielectric constant in the millimeter-wave region (roughly

E= 12). Therefore. in Section III we concentrate on discuss-
ing parameter dependencies and obtaining design data for
grating antennas of permittivity c = 12. Generalization to
structures with lower dielectric constants is straightfor-
ward, and even better accuracy can be expected.

When the phase and decay constants have been de-
termined the field distribution over the antenna aperture is
in principle known. The far field radiation pattern of the
antenna is then calculated in the usual manner by perform-
ing a spatial Fourier transform. Section IV presents results
for cases of practical interest.

II. THEORETICAL BACKGROUND

A periodically corrugated dielectric image waveguide is
depicted in Fig. 1. For antenna applications, we assume the
presence of a ground plane which will reflect any down-
ward radiated energy into the upward direction. In this
case, there is no need to design a special profile [ 16]–[ 19] of
the teeth in order to eliminate downward radiation. There-
fore, throughout this paper, we shall consider only rectan-
gular teeth, i.e., a groove profile that can be made easily
and precisely by machining. Regardless of how the antenna
structure is fabricated, we shall take the view that it
consists of two parts: one is the uniform image waveguide
(unperturbed structure), and the other is the periodic layer.
The uniform image waveguide has a rectangular cross
section of height h and width w. The periodic layer has a
thickness t, a period d, and a tooth width dl. Finally, we
shall consider explicitly only the special case where the
periodic layer has the same width and the same dielectric
constant as the uniform image waveguide, even though the
theory described herein will be applicable also to periodic
layers of different materials.

A. Characteristic Solution of Periodic Dielectric Waveguides

As an exact electromagnetic boundary value problem,
periodic dielectric waveguides have been rigorously treated
for the case of normal incidence (with respect to the
direction of the grating grooves) and with the assumption
that both the antenna structure and the source distribution
do not depend on the coordinate parallel to the grooves

(Y-axis). Under these simplifying conditions, a general
electromagnetic wave propagating in a periodic dielectric
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Fig. 1. Corrugated image guide of finite width. (For the antenna widths
considered in this paper, w z A, the angle @will be relatively small.)

waveguide can be decomposed into independent TE and
TM modes, which have been formulated in an exact fash-
ion and analyzed extensively in the literature [9]–[ 14]. The
advantage of the exact formulation is that it applies to
gratings of arbitrary dimensions and constitutive parame-
ters. A computer program” based on the exact formulation
is available; it was developed originally for the analysis of
optical periodic couplers. Although this computer code
requires relatively long computing times, it has been quite
useful in establishing the accuracy of the various ap-
proximation techniques introduced subsequently. The com-
puter program has been used for the same purpose in the
present investigations of leaky-wave antennas for the milli-
meter-wave region.

While the assumption that both the structure and the
source of excitation are uniform in the direction parallel to
the grooves holds for most optical couplers, it is too
restrictive for millimeter-wave grating antennas. The basic
problem that has to be solved in the theory of gratings of
finite width is the analysis of waves propagating at an
oblique angle in a grating of infinite width [4]–[6]. This
three-dimensional boundary value problem has only hybrid
modes as solution, i.e., it involves coupling of TE and TM
modes and cannot be reduced to the two-dimensional case.
The problem has been formulated [4] and the effect of
finite antenna width on, the performance of grating an-
tenna has been analyzed [6]. It has been shown in particu-
lar [5], [6] that the longitudinal phase constant is essentially
that of the corresponding unperturbed structure and that
the decay constant does not appreciably differ from that of
a two-dimensional grating antenna (at normal incidence),
as long as the antenna width is not very small. We shall
assume in the following that this condition is satisfied, i.e.,
that w is in the order of a wavelength or larger.

B. Phase Constant of Grating Antennas

The uniform image waveguide belongs to the class of
dielectric-strip waveguides for which a general method of
analysis has been developed [20]–[23], and a new physical
phenomenon of energy leakage has been shown to exist
under appropriate conditions [22]–[24]. However, energy
leakage will not take place in the image waveguide consid-
ered here. Therefore, the propagation constant is real in
this case and can be determined with the help of approxi-
mate techniques, such as Marcatilli’s method [25] or the
EDC method [21]. We shall employ the EDC method
throughout this paper since it yields the more accurate
results for the antenna structures with which we are con-
cerned; this applies to the whole frequency range of inter-
est, including the cutoff region.

(a)

(b)

1 Xb..-+
I Y

kw<

Fig. 2, Dielectric strip waveguide and the approximate EDC model. (a)
Ridge guide and (b) EDC model,

The EDC technique is a simple method that employs
transverse resonances to determine constituent transverse
wavenumbers. To illustrate how this method is applied, let
us consider the dielectric ridge waveguide of Fig. 2(a). One
first views the cross section of the waveguide in terms of
inside and outside regions, and then considers temporarily
each of these uniform regions as being infinitely wide in
the lateral direction. A transverse resonance in the vertical

direction is then determined separately for the inside re-
gion of height h and for the outside region of height ~ As a
result, the inside and outside regions are characterized in
terms of effective dielectric constants C.ff and F.ff, respec-
tively (indicating the axial propagation constants of the
waves guided by the corresponding slab guides).

The next step in the EDC procedure is to neglect the
presence of the step discontinuity at the sides of the
waveguide, and to assume that the inside and outside
regions, which are each now characterized as uniform
homogeneous dielectric media with effective dielectric con-
stants, are simply placed next to each other, as shown in
Fig. 2(b). Now, we may effect a transverse resonance in the
horizontal direction, and obtain the final value for the
propagation constant kX of the guided mode.

In the present case where we are considering antennas of
the image guide type, the outside region has vanishing
thickness ~= O. Furthermore, to account for the effect of
the periodic perturbation on the phase constant of the
antenna, a layer of thickness t and uniform dielectric
constant that is equal to the average dielectric constant c~ve
of the corrugated region is added on top of the original
uniform layer forming the inside region. The modified
uniform structure and its EDC model are shown in Fig.
3(a) and (b), respectively. The corresponding dispersion
curves are presented in Fig. 4(a) and (b) and Fig. 5 and are
discussed below. As mentioned before, we are restricting
ourselves to silicon antennas with c = 12.

We first consider two limiting cases that are of concep-
tual interest. Fig. 4(a) shows the dispersion curves for the
fundamental TM mode of a laterally unbounded dielectric
layer of height h. Two different values are assumed for the
dielectric constant of the region above the layer. The first
value, c~= 1, corresponds to the limiting case t = O, where
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Fig. 3. Unperturbed image guide and its EDC model. (a) Unperturbed
image guide and (b) EDC model.
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the perturbation layer of the antenna has vanishing thick-
ness. The second value, c. = 6.5, is the volume average
dielectric constant of the corrugated region assuming an
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Fig. 5. TE-mode dispersion curves for various values of the dielectric
constant.

aspect ratio dl /d = 0.5; the corresponding dispersion curve
applies to the limiting case t - co. Evidently, for a finite
corrugation-region thickness, O< t < co, the dispersion
curve must lie between these two curves which define the
upper and lower bounds of the effective dielectric constant
of the antenna. The dependence of C,ff on t is shown in Fig.
4(b); the height h of the uniform portion of the antenna
structure serves as a parameter in this graph.

For the second major step in the EDC method, i.e., the
determination of the transverse resonance in the horizontal
direction, the dispersion curves of the fundamental TE
mode are needed for a slab waveguide of width w and
permittivity Ceff,where ~effhas been determined in the first
step (transverse resonance in the vertical direction). These
dispersion curves are shown in Fig. 5 where ~a,, the overall
effective ~ of the antenna, is plotted versus w for various
values of ~,ff.

Figs. 4(b) and 5 provide all the information necessary for
applying the EDC method to the (approximate) determina-
tion of the propagation constant of dielectric grating
antennas. Comparison with the results of the (rigorous)
computer method has confirmed the accuracy of the EDC
technique.

C. Leakage Constant of Grating Antennas

While the propagation constant of dielectric grating an-
tennas can be accurately determined from the EDC method,
i.e., from an approximate technique which is easy to han-
dle, calculation of the leakage constant requires a more
rigorous solution of the problem. However, as pointed out
in the first part of this section, the leakage constant of an
antenna of finite width w can be approximated by that of
an antenna of infinite width operated at normal rather
than oblique incidence (with regard to the direction of the
surface grooves). In this way, determination of the leakage
constant can be reduced from a vector problem involving
TE–TM coupling to a scalar problem in terms of TE waves
or TM waves alone.

The theory of millimeter-wave grating antennas of in-
finite width can be adapted from the previously developed
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lGround plane

Fig. 6. Configuration of grating antennas.

analysis of optical periodic couplers [10]. The theory subdi-
vides the total space range above the ground plane into
three subregions (see Fig. 6): The uniform waveguide re-
gion – hs zs O, the grating region Os zs t, and the air
half space ts zs co. Because of the periodicity of the
antenna structure, the electromagnetic field in each of
these regions can be written as a superposition of space
harmonics. For TM modes we have

Hy(x, z) = ‘~ml~~)(z)exp(ikxnx) (1)
~=—~

where IjJ) is the magnetic field amplitude of the n th space
harmonic in subregion j ( =1, 2, or 3), and kXm is the
x-component of the complex wavenumber of this harmonic;
kx~ is the same in the three subregions and is related to the
wavenumber of the fundamental harmonic by

kX~ = kXO + 2m/d

=~--ia+2vn/d=&ia (2)

where ~ and a are the propagation and attenuation con-
stants of the fundamental harmonic, respectively. Note
that the propagation constant of the n th harmonic differs
from that of any other hm-monic but the attenuation con-
stant a is the same for all harmonics. ,

By introducing the boundary condition that the tangen-
tial components of the electric and magnetic field strength
must be continuous in the planes z = O and z = t, and by
formulating an appropriate radiation condition at z ~ cc, a
homogeneous linear system is obtained for the space
harmonics amplitudes 1#) in the three subregions, In other
words, the problem is reduced to an eigenvalue problem;
after appropriate truncation of the linear system, this prob-
lem can be solved numerically. The eigenvalues determine
the complex wavenumber of the fundamental space
harmonic, i.e., the propagation and leakage constant of the
grating antenna, while the eigenvectors yield the ampli-
tudes of the space harmonics in the three subregions j = 1,
2, and 3.

Since the antennas considered here operate above a

rigorous formulation is needed to determine the imaginary
part, i.e., the leakage constant of the antenna. The
computer program previously written for optical periodic
couplers has been used to obtain this data for the millime-
ter-wave antennas considered here. Graphs showing the
dependence of a on the antenna dimensions will be dis-
cussed in Section HI.

D. Conditions for Single-Beam Radiation

In the grating region Os z <-t, the various space
harmonics are mutually coupled by the boundary condi-
tion that Et~~ and H,m~ must be continuous at the vertical
interfaces between teeth and grooves. In the air region, on
the other hand, the medium is uniform and each harmonic
propagates as an independent plane wave. The transverse
propagation constant of the nth harmonic is given by

kz~ = (k: – k;.)’”. (3)

For a shallow corrugation, i.e., when t is small, it is
intuitively clear that a = O and kXO = /3, where ~ is the
longitudinal propagation constant of the unperturbed
structure, as shown in Fig. 3(a). In this case we obtain,
from (2) and (3)

‘zn=kwn~t+na’l’”(4)

where n ~t = ~=B/kO is the effective refractive index
of the unperturbed structure. Single-beam operation im-
plies that only the n = – 1 harmonic radiates. Hence, we
must have k,, _, real, while all k:. with n * – 1 are imagin-
ary. This requirement imposes the following condition on
the corrugation period d:

A A
<d<— fornmt>3 (5)

n,nf+l nant–l ‘

A 2A
<d~— fornat <3. (6)

nat + 1 ?zant+ 1 ‘

Although these formulas are derived under the assumption
that t is very small, they also hold in good approximation
for large t, except when a becomes large. For most practi-
cal cases, where t is smaller than h and small compared to
A, (5) and (6) should give a fairly accurate estimate of the
range of admissible d values.

For the set of values for nmt and d satisfying either (5) or

(6), the n = – 1 harmonic radiates into the air region at an
angle (with respect to the z-axis)

@_, =sin-’(8-,/kO) =sin-’(nmA-d)d). (7)

metal ground plane, they radiate into the upward direction The sign of @_, determines whether forward or backward
only. As a consequence, it is unnecessary to explicitly radiation is obtained.
determine the space harmonic amplitudes as long as we are
interested in single-beam (i.e., single space harmonic) radi- 111. DESIGN OF LEAKY-WAVE ANTENNAS

ation only. Since this is the practically interesting case, we Since we are restricting ourselves to antennas of given
only have to determine the dispersion root kXo = ~ – ia of permittivity (c= 12), the antenna configuration is char-
the antenna; kXo will be referred to as the complex wave- acterized by four geometrical parameters: the height of the
number of the antenna. While the real part of kXo can be uniform waveguide h; the thickness of the corrugation
obtained in good accuracy from the EDC method, the region t; the period of the corrugation d; and the aspect
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ratio d, /d. We shall determine the effect of each of these
parameters on the antenna characteristics. The free-space
wavelength is regarded here as a normalization parameter
of the antenna dimensions.

The influence of the antenna width w on the complex
wavenumber kXO = ~ – ia, and on the field distribution
within the antenna in general, is small since we have
assumed that w is in the order of A. See for example Fig. 5,
which shows that for w >1: c~t = ~.ff, so that the effective
dielectric constant is practically independent of the an-
tenna width.

A. Ej$tiect of Waveguide Height h

From Fig. 4(a), we observe that h < 0.2A will ensure the
existence of only the fundamental mode, if the corrugation
thickness is not very large. We further observe that a larger
value of h/A will yield a smaller change in e,ff in response
to a change in h/A. This means physically that at high
frequencies, the waveguide height does not appreciably
affect the fundamental guided mode and that fabrication
tolerances will not be a serious problem. On the other
hand, if frequency scanning of the antenna beam is a main
objective, (7) shows that A should be chosen such that c~ff
changes most rapidly with A. This means that h/A should
be small (h/A = O.1). Choosing h/A will therefore involve
a tradeoff between fabrication tolerances and scan range.

Moreover, the choice of h /A will have a strong influence
on the field distribution of a guided wave. Near cutoff, i.e.,
at low frequencies, most of the field energy is transmitted
in the air region, while at high frequencies the field is
mostly concentrated within the uniform dielectric. In these
two extreme cases, the field in the corrugation region is
expected to be very weak and so is the radiation. In other
words, we can expect that for a given waveguide height h,

the radiation will peak at an intermediate frequency or,
conversely, at a given frequency there exists an optimum
waveguide height h providing the strongest radiation. Fig. 7
shows the variation of the phase constant (radiation angle)
and leakage constant with changing waveguide height h.
For the set of parameters indicated, the radiation peaks at
h/A = 0.208. The corresponding radiation angle is 46°.
Furthermore, we observe that a change of 10 percent in
h /)i will reduce the radiation rate to less than half its peak
value, while the change in radiation angle is relatively
small. Evidently, in this case, the thickness of the uniform
layer is an important parameter for the control of the
radiation rate while it does not significantly affect the
radiation angle.

B. Effect of Grating Thickness

Fig. 7 shows that a reasonable thickness of the uniform
layer is h/A= 0.2; we shall assume this value in the
following discussion. It is known from the literature [9]-
[14] that the radiation rate a is proportional tot 2, for small
t, ‘and that it reaches a saturation value for large t, pro-
vided the guided-wave field remains evanescent in the
corrugation region. For the aspect ratio d, /d = 0.5, the
average dielectric constant of the grating region is t ~ve= 6.5,
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Fig. 7. Variations of phase and attenuation constants with wavegulde
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and the guided-wave field is indeed evanescent in this
region. Fig. 8 shows the radiation constant a as a function
of t. It is evident that the radiation rate varies with
corrugation thickness in the expected fashion.

C. Effect of Grating Period d

With the principle of grating antennas based on the
periodic nature of these structures, it can be expected that
the period of the corrugation is the most important design
parameter of this class of antennas.

According to (5) and (6), the choice of d determines
whether single- or multiple-beam radiation is obtained;
and, according to (7), d has a determining influence on the
radiation angle @_, and, thus, on the propagation constant
/3. The dependence of the leakage constant a on d is

plotted in Fig. 9(a) and (b) assuming h = 0.2A, t = 0.05A,

which insures the existence of only the fundamental mode.
For completeness, some radiation angles @_, are indicated
in these figures.

Fig. 9(a) shows that cA is in the order of 0.1 over a large
range of d/A values. This has consequences concerning
antenna size and efficiency. For a grating antenna to be
efficient, its axial length must be sufficiently large, i.e.,
most of the guided power must be radiated out before it
reaches the antenna termination at the far end (where the
remaining power is absorbed in order to avoid pattern



SCHWERING AND PENG: DESIGN FOR LEAKY-WAVE ANTENNAS

0.10,

lr71
TM Mode

, ml 11

8 II

II

Q)i 5 Stopband
.s=12

hlA=O.2
tlk=o.05

ctqld =0.5

,;~
0.20 0.25 0.30 0.35 0.40 0.45

l--d
‘&’J +., = -47”

hj_-

f

ah Ground plane

0.05
● =12

h/A=O.2
i/A= o.05

d/A=O.25

O.O.,O
0.5 1.0

dlld

Fig. 10. Variations of phase and attenuation constants with aspect ratio.

(a)

, 1 1 1

a:)$ +:,;jjijjj;:=:::::m,’~-l<--d=,osnsm -

0.,

-10
Fig. 11. Variations of phase and attenuation constants with wavelength.

10i.29
I I I I I

0.30 0.31 0.32 0.33 0.34

dl~ D. Effect of Aspect Ratio

(b)
In the two limiting cases of the aspect ratio, dl /d = O

Fig. 9. Variationsof phaseandattenuationconstantwith gratingperiod.
(a) Dependenceof leakageconstanta on d. (b) Leakage constant in

and 1, the periodic structure becomes uniform and no

immediate vicinity of stopband. radiation can occur. For optical structures with a relatively

low dielectric constant, it is well known that maximum

distortions). The axial length required to obtain a given
radiation occurs at ~1 /d = 0.5 [14]. For millimeter-wave

efficiency TJis
antennas, however, the dielectric constant is relatively high
and the field varies strongly across the grating region which
leads to a significant change in the functional dependence

L=–+ln(l–q)
of the leakage constant on aspect ratio (see Fig. 10). For

where dielectric losses have been neglected. If a~ = 0.1, c = 12, the field is evanescent in the grating region for

then L/A = 11.5 for q =90 percent, and L/X = 23 for dl /d = 0.5, and the radiation rate is greatly reduced. The

q = 99 percent. This leads to very reasonable antenna maximum of cIA has shifted to d, /d = 0.7. Hence, to

dimensions even in the lower millimeter-wave region near obtain a large radiation rate, the grooves should be chosen

A = 1 cm.l The large CXX values of Fig. 9(a) are a conse- ‘elatively ‘arrow.
quence of the high dielectric constant considered here E Frequency Scanning

(c= 12). Computations for a boron nitride antenna with
~= 4 have yielded a~-values by an order of magnitude A particular advantage of grating antennas is that their

smaller, i.e., in the order of 0.01. High efficiency would radiation pattern can be scanned electronically by chang-

require rather large antennas in this case. ing frequency. We discuss this scan capability by using a

Fig. 9(a) also confirms the well-known fact that periodic specific example, i.e., a silicon antenna with grating period

antennas do not radiate in the boreside direction @_1= O. d = 0.81 mm for backward radiation and d = 1.05 mm for

As boreside conditions are approached an internal reso- forward radiation. The antenna is assumed to be operated

nance develops leading to a stopband, i.e., the reflection in the 3-mm region (94-GHz band) and to be designed for

coefficient of the antenna approaches unity. Fig. 9(b) shows single-beam operation. Fig. 11 shows the radiation angle

the leakage constant in the immediate vicinity of the stop- +_, as a function of X for both grating periods. In addi-

band. Apparently the stopband is very narrow. For l+-, I z tion, the leakage constant a is plotted versus A. The leakage

2.5° near normal values of a~ are restored. constant is of importance since, for efficient antennas of
sufficient axial length, it determines the beamwidth of the

1The effects of CWIand L/k on the directivity and beamwidth of the main beam and its ~ariation with scan angle.

antenna are discussed in Section IV. The figure shows that for a 10-percent change in wave-
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length, say from A = 2.85 mm to 3.15 mm, the main beam

direction sweeps almost linearily over an angular range of

about 25° for backward radiation and 20° for forward

radiation. In both cases, the leakage constant reaches a

peak value near h = 3 mm and decreases almost symmetri-

cally from this maximum as the wavelength changes. This

is a very desirable characteristic. If we designate the A = 3-

mm wavelength as the center wavelength of a frequency

scan, the a values and, thus, the beamwidth will change

comparatively little as the antenna is scanned and a stable

radiation pattern with little beam distortions can be ex-

pected.

IV. RADIATION PATTERN

A grating antenna of finite length L and width w is
shown in Fig. 12(a). It is assumed here that the antenna is

fed by and terminates into uniform dielectric waveguides

of the same height, width, and permittivity as the antenna

itself. Furthermore, we assume that only one leaky-wave

mode is excited in the antenna. This mode can be ex-

pressed as a superposition of space harmonics according to

(l). In the “antenna aperture”, i.e., in the portion of the

plane z = t located just above the antenna, the magnetic

field strength takes the form

+m

HY(x, y, t) = e-”’ ~ Z.e-*8nxcos (~) (8)
~=. m

for

The complex wavenumber /3 – ia and the space harmonics
amplitudes 1. are determined by the eigenvalue problem
described in the Section II-C. The y-dependence of HY is

approximate but should be accurate if w is sufficiently

large (w> A). Furthermore, any effects of the antenna-

to-waveguide transitions at x = O and L on the aperture
field of the antenna have been disregarded.

As stated before, the antenna dimensions are chosen

such that only the n = – 1 space harmonic will radiate.

Hence, for the calculation of the radiation pattern, the field

distribution in the plane z = t can be approximated by the
contribution of the n = – 1 space harmonic alone

1 ()I_,e–a~e–L~o-~sln$-lcos ~
w’

HY(x, y,t)=
for O<x<L, ]Yl<;

(9)

(0, elsewhere.

Here we have used (7) to replace P – 2n/d by k. sin@_,.
The approximations involved in (9) require further dis-

cussion. In actuality, the surface wave guided by the feed-

ing and terminating waveguides and the space harmonics

of order n * – 1 of the antenna will contribute to the

magnetic field distribution in the plane z = t. Since antenna

X=(I
(a)

x=L

‘t
Y

‘#J

/ Y=-wlz \A ntenna Aperature
(plane z =t)

(b)

Fig. 12. Antenna aperture and coordinate system for far field calcula-

tion. (a) Grating antenna of finite length L and width w. (b) Antenna

aperture.

and waveguides are of finite or semi-infinite (rather than
infinite) length, these fields, though exponentially decaying
in the z-direction, will in principle contribute to the radia-

tion pattern and so will the fields scattered at the antenna-

to-waveguide transitions. These contributions are neglected

here because the antenna length L is large compared to A
and since any transitions can be made gradual by tapering

the depth of the corrugations. Only spurious radiation will

result which will have little effect on the mainbeam (though

it can have a strong effect on pattern shape in the sidelobe

region and, in particular, in the far sidelobe region where

power levels are substantially reduced).

Calculation of the radiation pattern from field distribu-

tion (9) is straightforward; details are given in Appendix.

The power radiation pattern of the antenna is obtained in

the form

G(6, @) = G~S(cosd)T(sin@ sinO)

where

is the directivity gain of the antenna and

‘(sin+sin’)=(l-w’
1 –2e-”~cos[kOL(sin@ sin8 –sin@_l)]+e-2”~

(aL)2+(kOL)2(sin@ sin6-sin@_l)2

is the E-plane pattern and

S(cose) =(;)’ Cos’(%cose)sin’,

((:12-(%+2)2
is the H-plane pattern; d and Y are spherical coordinates as
indicated in Fig. 12(b). Both S and T are normalized to
unity in the main beam direction 0 = 90°, @= @_,.

The H-plane pattern is the well-known radiation char-
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Fig. 13. E-plane pattern for @_, = 24°, CA= 0.1 and (a) L = IOA, (b)

L= 20A, (c)L= 150a.

acteristic of a cos-tapered source distribution. Its 3-dB

beamwidth is A@= 27r/(kOW) and all sidelobes are below

– 23 dB. The E-plane pattern is that of an exponentially

tapered source distribution. This pattern is plotted in Fig.

13(a)–(c) for various values of L assuming a leakage con-

stant a~ = 0.1. For the L-values considered in these figures

(L> 10A), the antenna efficiency q = 1 – e-z”= exceeds 85

percent, and the 3-dB beamwidth is in the order of a few

degrees, which is appropriate for most millimeter-wave

applications. A narrower beamwidth is, in principle, easily
realizable by reducing the leakage constant a and corre-

spondingly increasing L ( - 1/a). The opposite case, where

a broader beamwidth is required, poses more of a problem:

either a would have to be increased beyond a~ = 0.1,

which is already close to the maximum value for antennas

with E= 12, or the antenna length L would have to be

reduced at the expense of a decreased efficiency q. First

sidelobes of the E-plane pattern are down by only – 13

dB.l However, these sidelobes degenerate into small

shoulders as the antenna length is increased and the field

strength at the far end of the antenna becomes smaller and

smaller. If aL >>1, so that practically all of the input

power is radiated and less than 1 percent remains to be

absorbed in the antenna termination, the sidelobes com-

pletely disappear and, within the approximation used, a

very smooth pattern is obtained (see Fig. 13(c)). Of course,

pattern shaping is possible by tapering the depth of the

surface corrugation or its aspect ratio 6!1/d while main-

taining d as a constant (to preserve periodicity). This

possibility, however, is not studied in this paper.

As should be expected, the directivity gain GD is propor-

tional to the antenna aperture area 2wL, as long as aL <<1,

and the aperture illumination is practically uniform (low

efficiency case). In the opposite case that aL >>1, the

effective length of the antenna is determined by the decay

constant a. Accordingly, GD is proportional to 2w/a in this

case, and independent of L.

APPENDIX

RADIATION PATTERN CALCULATION

With the tangential magnetic (or electric) field distribu-

tion in the aperture plane of the antenna z = t known, the

field distribution in the air halfspace z > t can be for-

mulated as a surface integral involving the well-known

Green’s function of a plane screen as a kernel. The far-zone

field is obtained by evaluating this integral asymptotically

for kr -+ m. Using the spherical coordinate system in Fig.

12(b), and assiuning that the magnetic field distribution in

the antenna aperture has a y-component only, we obtain

with

R(6f, +)=sinO/f+mHy(x’, y’, t)
—cc

. ~lko[xlsm.$sin O+ yiCOS@] dxl dyl for kor + m. ,(A2)

The remaining field components are negligible. R(8, +)

is the field strength radiation pattern which is related to

the aperture distribution of the antenna by a Fourier

transform. We represent the power radiation pattern by the

directivity gain function

47rr2Sp(r,0, @)
G(8, @)= PA (A3)

2This comparatively high sidelobe level is due to the assumption
inherent in (9) that the aperture distribution of the antenna abruptly ends
with a discontimrit y at x = L. A more gradual behavior of the aperture
distribution at the antenna-to-waveguide transitions could be simulated
by multiplying the right side of (9) with a weighting function of the form
sin ( rrx ,/ L).The aperture distribution would then be continuous at x = O
and L, and the first sidelobes of the E-plane pattern would be reduced to
– 23 dB.
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where

is the Poynting vector, and

Hp4=r2 “ ‘“” Sp(r, fl, @)sin6d6d@ (A4)
0=0+=–7/2

is the total radiated power of the antenna. Using (9) for the

aperture distribution of Hj,, the integrals on the right side

of (A2) can be evaluated in closed form, and the power

radiation pattern (A3) can be formulated. Calculation of

the total power PA requires an additional integration which

can be performed approximately by considering that the

major portion of the antenna power is radiated in the

vicinity of the mainbeam direction 9 = Ir/2, 4 = @_~. We

thus obtain

. S(cos 6) T(sin@sinO)

where

S(cose) = (;]4 Cosrfcos’l ~‘7

{H-i-o’s’n-o
‘@in@in’)=(L%J

1 – e-”Lcos [kOL(sin~sin6 –sin~_l)]+e-2”~

(rxL)2+(kOL)2(sin@ sin0 -sin@_ l)’ “

S and T have been normalized to be unity in the main

beam direction. Hence, the power radiation characteristic

((A3)) takes the form

G(@, $)= GDS’(cost9)T(sin@ sin O) (A5)

where

is the directivity gain of the antenna. The function S’(cos 6’)
determines the H-plane pattern and the function T(sin + -

sin t9) the E-plane pattern of the antenna. Graphs of the

E-plane pattern are shown in Figs. 13(a)–(c). The H-plane

pattern is the well-known radiation characteristic of a

cos-tapered aperture illumination.
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Theory of Optically Controlled
Millimeter-Wave Phase Shifters

AILEEN M. VAUCHER, CHARLES D. STRIFFLER, MEMBER, IEEE, AND CHI H. LEE, MEMBER, IEEE

Abstract — In this paper we anafyze the millimeter-wave propagation

characteristics of a dielectric wavegaide containing a plasma-dominated

region. Such a device presents a new method for controlfirrg millimeter-wa~e

propagation in semiconductor waveguides via either optical or electronic

means resulting in ultrafast switching and gating. We have calculated the

phase shift and attenuation resulting from the presence of the plasma.

Higher order modes, both TE and TM, as well as millimeter-wave frequency

variation, are studied in both Si and GRAS dielectric wavegnides. We have

also formulated a surface plasma model that is a good approximation to the

more elaborate volume plasma model, Phase shifts are predicted to he as

high as 14000/cm for modes operating near cutoff. These modes suffer

very little attenuation when the plasma region contains a sufficiently high

carrier density.

I. INTRODUCTION

WE ARE CURRENTLY witnessing a resurgence of

interest in millimeter-wave technology. The

frequency band extending from 30 to 1000 GHz is attrac-

tive in several respects. Devices operating above K-band

frequencies offer greater carrier bandwidth, better spatial

resolution, and a more compact technology than presently

used X- and K-band systems. Millimeter- and submillime-
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was supported in part by the Harry Diamond Laboratmy; the U.S. Army;

the Minta Martin Aeronautical Research Fund, College of Engineering,
University of Maryland; and the University of Maryland Computer

Science Facility.
The authors are with the Electrical Engineering Department, University

of Maryland, College Park, MD 20742.

ter-wave systems also have some advantages over optical

systems, such as better atmospheric propagation in selected

bands and a technology more amenable to frequency mul-

tiplexing [ 1]–[3], while retaining good angular resolution of

the latter. A basic problem is how to effectively preserve

these benefits. Our approach to the solution of this prob-

lem promises to yield much larger modulation bandwidths

than are realizable with optical systems, while preserving

the economy of the millimeter-wave system over a given

carrier frequency band.

One of the important parts of the microwave and/or

millimeter-wave system is the waveguide. At microwave

frequencies, metal waveguides are commonly used. At

higher frequencies, either microstrip or dielectric wave-

guide structures become more attractive. Microstrip trans-

mission lines are used up to 30 GHz. For frequencies

greater than 30 GHz, the losses in microstrip structures are

high, and fabrication techniques become more difficult due

to the small strip width and the substrate thickness. Dielec-

tric rectangular waveguides become an alternative tp the

expensive metal waveguides. The use of high-purity semic-

onductor materials as dielectric waveguides is particularly

important since active devices such as oscillators, Gunn or

IMPATT diodes, mixers/detectors, and modulators can be

fabricated monolithically with the semiconducting wave-

guides.
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